Eveline Baesu
Associate Professor Mechanical & Materials Engineering University of Nebraska-Lincoln
Contact
- Address
-
NH W304
Lincoln, NE 68588-0526 - Phone
-
402-472-2382 On-campus 2-2382
-
ebaesu@unl.edu
Professor Baesu’s research is in the general area of solid mechanics. There are three main areas of interest: (i) electromechanical effects, (ii) fiber networks, and (iii) biomechanics.
Electromechanical effects: Her research in the electrodynamics of continuous media has focused on modeling coupled nonlinear electromechanical effects in solids, especially piezoelectric materials, with an emphasis on the effects of initial electric and mechanical fields on subsequent behavior. Her work in this area has led to substantial contributions to the understanding of failure and material stability in electroactive materials, in general, and in piezoelectrics in particular. Current research interests in this area include multiscale modeling of piezoelectricity.
Fiber networks: Another area of research that Professor Baesu is actively pursuing is the modeling of continua of filamentary networks. She developed a model for continua composed of a network of elastic-plastic fibers, which allows the overall response of the continuum to be inferred from the properties of each fiber family and, vice versa, under certain restrictions on the number of fiber families. This last feature may be particularly useful for the experimental characterization of certain composites consisting of nanofibers, for which the properties of the nanofibers cannot be directly measured. Currently, this paradigm is extended to a network of piezoelectric fibers, which are again important for smart structure applications. Further, she is exploring applications of this theory to the design of tissue scaffolds for biomedical applications.
Biomechanics (cellular mechanics): Another area of Professor Baesu’s research is the mechanics of living cells. In a unique collaborative effort with biologists and materials scientists at the Lawrence Livermore National Laboratory, she has helped develop a multi-pronged research program that integrates experimental, theoretical, and computational approaches, centered on the unique capabilities of the atomic force microscope (AFM). The focus of her work has been the development of a nonlinear model of the cell membrane and the modeling of contact between the AFM tip and the cell membrane. The aim is to exploit these capabilities and develop a tool for non-destructive monitoring of changes in living cells, with applications, e.g., to early diagnosis of cancer, multiple sclerosis, and pathogen invasion.
Education
- University of California at Berkley, Ph.D. in Solid Mechanics (1998)
- University of Bucharest, Romania, M.S. in Mathematics
Research Interests
- Electromechanical effects
- Fiber networks
- Biomechanics
Selected Publications
- E. Baesu, R. E. Rudd, M. McElfresh and J. Belak, “Continuum Modeling of Cell Membranes”, Intern. J. Nonlinear Mech. 39, 369-377 (2004).
- E. Baesu, “On Electroacoustic Energy Flux”, J. Appl. Math. and Phys. (ZAMP) 54, 1001-1009 (2003).
- E. Baesu, “Finite Deformations of Elastic-Plastic Filamentary Networks”, Intern. J. Nonlinear Mech. 38, 1473-1479 (2003).
- M. McElfresh, E. Baesu, R. Ballhorn, J. Belak, M. Allen, and R. E. Rudd, “Combining Constitutive Materials Modeling with Atomic Force Microscopy to Understand the Mechanical Properties of Living Cells”, Proceedings of the National Academy of Sciences, 99 6493-7 (2002).
- E. Baesu and E. Soos, “Antiplane Fracture in a Prestressed and Prepolarized Crystal”, IMA J. Appl. Math. 66, 499-508 (2001).