Faculty - Cheung

Barry Cheung, Associate Professor

Barry Cheung

Barry Cheung
Associate Professor

University of Nebraska–Lincoln
514A Hamilton Hall
Lincoln, Nebraska 68588-0304
Office: 402-472-5172

Research Interests

My research interest is in the design and synthesis of inorganic/bio-organic nanoscaled components that can self-assemble into 3-dimensional hierarchical structures with novel physical and chemical properties. Our strategy is to abstract the efficient designs from nature to guide the synthesis of self-assembled components of materials systems.

Our research goal is to advance the understanding of the self-assembly process in the bio-inorganic systems by determining the physical and chemical mechanisms by which important inhibitors or promoters control the nucleation, growth, aggregation, and phase transformations of materials assembled from asymmetric and/or symmetric components. The types of systems we are currently studying are nanospheres, nanowires, and icosahedral viruses.

For the icosahedral virus system, we are investigating the properties and assembly mechanism of these particles from small protein fragments into virus crystals. Specifically, we examine the effects of different solution compositions on the assembly of virus structures in solutions. We are also mapping the inter-viral potential energy surfaces in different solution compositions that lead to different virus assembled structures with force microscopy techniques. Comparison between the hierarchical structures made with different solution compositions and Monte Carlos simulation results of the model systems with the thermodynamic data from the energy landscape measurements are used to provide further insight of the assembly mechanisms.

Since device physics and properties of materials are known to change when the dimension of the device is reduced down to the nanometer scale, we are also applying the knowledge learnt from the self-assembly mechanism to engineer and characterize functional nanostructures for prototyping various kinds of analytical devices. The aims of these projects are to bridge the "gap" in the assembly of materials between the nanoscale (1-10nm), mesoscale (10nm - 1mm) and the micron scale systems for the fabrication of functional devices and systems.

In my research group, students gain experience in synthesizing low-dimensional materials such as semiconducting nanotubes and nanowires using liquid phase and chemical vapor deposition methods. They also learn diverse materials characterization skills such as atomic force microscopy, transmission electron microscopy and scanning electron microscopy. They do research in areas ranging from biomimetics through physical chemistry to materials science and analytical device fabrication.


  • "Crystalline alpha-Sm2S3 nanowires: Structure and optical properties of an unusual intrinsically degenerate semiconductor" C.M. Marin, L. Wang, J.R. Brewer, W.N. Mei, W.N., & *C.L. Cheung. J. Alloy. Compd. 559, (accepted) (2013).
  • “High aspect ratio composite structures with 48.5% thermal neutron detection efficiency” Q. Shao, L.F. Voss, A.M. Conway, *R.J. Nikolic, M.A. Dar, & *C.L. Cheung. Appl. Phys. Lett. 102, 063505 (2013) DOI: 10.1063/1.4792703
  • "Existence of erbium hexaboride nanowires" Z.C. Gernhar, R.M. Jacobberger, L.Wang, J.R. Brewer, M.A. Dar, D.R. Diercks, W.N. Mei, & *C.L. Cheung. J. Am. Ceram. Soc. 95, 3992-3996 (2012). DOI:10.1111/j.1551-2916.2012.05427.x
  • "Controlling E. coli adhesion on high-k bioceramics films using poly(amino acids) multilayers" N.J. Lawrence, J.M. Wells-Kingsbury, M.M. Ihrig, T.E. Fangman, F. Namavar, & *C.L. Cheung. Langmuir 28, 4301-4308 (2012). DOI:10.1021/la2033725
  • "Building crystalline Sb2S3 nanowire dandelions with multiple crystal splitting motif" G. Wang & *C.L. Cheung. Mater. Lett. 67, 222-225 (2012). DOI:10.1016/j.matlet.2011.09.07
  • "Phase stabilization in nitrogen-implanted nanocrystalline cubic zirconia" G. Wang, G. Luo, Y.L. Soo, R.F. Sabirianov, H.-J. Lin, W.N. Mei, F. Namavar, & *C.L. Cheung. Phys. Chem. Chem. Phys. 13, 19517-19525 (2011). DOI:10.1039/c1cp22132a
  • “Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation”, N.J. Lawrence, J.R. Brewer, L. Wang, T.-S. Wu, J.M. Wells-Kingsbury, M.M. Ihrig, G. Wang, Y.-L. Soo, W.N. Mei, & *C.L. Cheung. Nano Lett. 11, 2666-2671 (2011).  DOI:10.1021/nl200722z
  • “Rare earth hexaboride nanowires: General synthetic design and analysis using atom probe tomography”, J.R. Brewer, R.M. Jacobberger, D.R. Diercks, & *C.L. Cheung. Chem. Mater. 23, 2606-2610 (2011).  DOI:10.1021/cm200258h
  • “Formation of porous cerium oxide membrane by anodization”, N.J. Lawrence, K. Jiang, & *C.L. Cheung. Chem. Commun. 47, 2703-2705 (2011). DOI:10.1039/C0CC04806B
  • "Planarization of high aspect ratio p-i-n diode pillar arrays for blanket electrical contacts" *Voss, L.F., Shao, Q., Reinhardt, C.E., Graff, R.T., Conway, A.M., Nikoli?, R.J., Deo, N. & *Cheung, C.L. J. Vac. Sci. Technol. B 28, 916-920 (2010). DOI:10.1116/1.3478306
  • "Growth of [100] textured gadolinium nitride films by chemical vapor deposition", Brewer, J.R., Gernhardt, Z., Liu, H.-Y. & *Cheung, C.L. Chem. Vap. Depo. 16 accepted (2010).
  • "Etching of 10boron with SF6-based electron cyclotron resonance plasmas for pillar-structured thermal neutron detectors", Voss, L.F., Reinhardt, C.E., Graff, R.T., Conway, A.M., Nikoli?, R.J., Deo, N. & *Cheung, C.L. J. Electron. Mater. 39, 263-267 (2010).
  • "Steric and electrostatic complementarity in the assembly of two-dimensional virus arrays", *Cheung, C.L., Rubinstein, A.I., Peterson, E.J., Chatterji, A., Sabirianov, R.F., Mei, W.N., Lin, T., Johnson, J.E. & De Yoreo, J.J. Langmuir 26, 3498-3505 (2010).


  • Fabrication of nanotube microscopy tips. United States Patent Award # 6,716,409. Lieber, C.M., Hafner, J., & *Cheung, C.L.
  • Direct growth of nanotubes, and their use in nanotweezers. United States Patent Award # 6,743,408. Lieber, C.M., Hafner, J., Kim, P., & *Cheung, C.L.
  • Crystalline nanostructures. U.S. provisional patent #60863564. *Cheung, C.L., Deo, N. & Brewer, J. Filed on Oct 30, 2006. The patent was filed a year afterwards and is now pending.
  • Scintillator with a matrix material body carrying nanomaterial scintillator media. Lètant, S.E., *Cheung, C.L., & Wang, T.F. Application filed on June 8, 2006. Pending.
  • Semiconductor materials matrix for neutron detection. Nikoli?, R.J., *Cheung, C.L., Wang, T.F., & Reinhardt, C.E. Application filed on April 27, 2006. Pending.


  • Nirmalendu Deo, 2008 - Chicago
  • Jie Ying Chan, 2009 - Malaysia
  • Ming Yuan Wong, 2008 - Malaysia
  • Dalal Gumeel, 2008 - University of Nebraska Medical Center, College of Pharmacy
  • Arlen Root, 2008 - Burns & McDonnell
  • Kevin Tvrdy, 2006 - University of Notre Dame
  • Ahmad Alhajami, 2006 - Kawasaki Motors Manufacturing
  • Tuan Ann Tran, 2007 - Abengoa Bioenergy New Technologies, Inc.
  • Toan Ha, 2007 - MDS Pharma Services